Arsenite modulates cardiac substrate preference by translocation of GLUT4, but not CD36, independent of mitogen-activated protein kinase signaling.
نویسندگان
چکیده
The protein thiol-modifying agent arsenite, a potent activator of stress signaling, was used to examine the involvement of MAPKs in the regulation of cardiac substrate uptake. Arsenite strongly induced p38 MAPK phosphorylation in isolated rat cardiac myocytes but also moderately enhanced phosphorylation of p42/44 ERK and p70 S6K. At the level of cardiomyocytic substrate use, arsenite enhanced glucose uptake dose dependently up to 5.1-fold but failed to stimulate long-chain fatty acid uptake. At the substrate transporter level, arsenite stimulated the translocation of GLUT4 to the sarcolemma but failed to recruit CD36 or FABPpm. Because arsenite did not influence the intrinsic activity of glucose transporters, GLUT4 translocation is entirely responsible for the selective increase in glucose uptake by arsenite. Moreover, the nonadditivity of arsenite-induced glucose uptake and insulin-induced glucose uptake indicates that arsenite recruits GLUT4 from insulin-responsive intracellular stores. Inhibitor studies with SB203580/SB202190, PD98059, and rapamycin indicate that activation of p38 MAPK, p42/44 ERK, and p70 S6K, respectively, are not involved in arsenite-induced glucose uptake. In addition, all these kinases do not play a role in regulation of cardiac glucose and long-chain fatty acid uptake by insulin. Hence, arsenite's selective stimulation of glucose uptake appears unrelated to its signaling actions, suggesting that arsenite acts via thiol modification of a putative intracellular protein target of arsenite within insulin-responsive GLUT4-containing stores. Because of arsenite's selective stimulation of cardiac glucose uptake, identification of this putative target of arsenite within the GLUT4-storage compartment may indicate whether it is a target for future strategies in prevention of diabetic cardiomyopathy.
منابع مشابه
Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake.
Activation of AMP-activated protein kinase (AMPK) in cardiomyocytes induces translocation of glucose transporter GLUT4 and long-chain fatty acid (LCFA) transporter CD36 from endosomal stores to the sarcolemma to enhance glucose and LCFA uptake, respectively. Ca(2+)/calmodulin-activated kinase kinase-β (CaMKKβ) has been positioned directly upstream of AMPK. However, it is unknown whether acute i...
متن کاملDipyridamole alters cardiac substrate preference by inducing translocation of FAT/CD36, but not that of GLUT4.
In cardiac myocytes, uptake rates of glucose and long-chain fatty acids (FA) are regulated by translocation of GLUT4 and FA translocase (FAT)/CD36, respectively, from intracellular stores to the sarcolemma. Insulin and contractions are two major physiological stimuli able to induce translocation of both transporters and therefore enhance the uptake of both substrates. Interestingly, the cardiov...
متن کاملProtein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes.
Increased contraction enhances substrate uptake into cardiomyocytes via translocation of the glucose transporter GLUT4 and the long chain fatty acid (LCFA) transporter CD36 from intracellular stores to the sarcolemma. Additionally, contraction activates the signaling enzymes AMP-activated protein kinase (AMPK) and protein kinase D1 (PKD1). Although AMPK has been implicated in contraction-induce...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 147 11 شماره
صفحات -
تاریخ انتشار 2006